
 

Abstract—  In this paper, we discuss the design 
detail of VM-DPoSW, the consensus algorithm 
that supports a robust BFDChain under the  
DAOS ecosystem. The workflow, design principle, 
implementation and its controllability analysis are 
discussed in detail. 

 
 

I. INTRODUCTION 

s one of the most important aspects of any 
blockchain systems, the consensus algorithm 

design is crucial to construct a robust and health 
blockchain ecosystem. In BFDChain, we designed a 
new consensus algorithm named VM-DPoSW, which 
is a virtual machine based hybrid system with both 
Proof of Work (PoW) and Delegated Proof of Stake 
(DPoS) support.    
 
The rest of this paper is organized as follows: In 
Section II, we present the state of art review of 
popular consensus algorithms. We then provide 
detailed technical discussion of VM-DPoSW and its 
controllability analysis in Section III and IV. Section 
IV includes concluding remarks of our design.   
 

II. STATE OF ART OF CONSENSUS ALGORITHMS 
A safe, orderly and healthy blockchain requires us to 
solve two fundamental problems: double spending 
and byzantine generals problem [8].  Double spending 
problem means to reuse the currency in two 
transactions simultaneously. Byzantine generals 
problem means during the peer to peer 
communication of the distributed system, some 
maliciously users may tamper the communication 
contents, thus lead to security breach or 
communication inconsistency.  
 
In order to make the whole blockchain safe and 
consistent, the generation of block needs to reach a 

certain consensus, thus the consensus algorithm is one 
of the keys for any blockchain technologies. The 
common consensus algorithms are PoW, PoS, DPoS, 
PBFT, and RAFT.  
 
PoW (Proof of Work): The workload proof 
mechanism, through a large number of HASH 
operations, calculates a suitable random number and 
produces a new block. And this is the safest way of 
security, but at the same time, it is also very energy 
consuming. Bitcoin [1] is the most typical PoW 
implementation. 
 
PoS (Proof of Stake): The ownership proof 
mechanism, through the holding amount and holding 
time of the token, reduces the difficulty of the block 
production. This method solves the problem of energy 
consumption comparing with PoW, but there are 
certain bottlenecks in security, and system bifurcation 
is easy to appear. PPCoin [6] is one typical PoW 
implementation. 
 
DPoS (Delegated Proof of Stake): The agent's 
equity proof mechanism, by which a certain number 
of agents are elected by the ballot papers, and the 
blocks are produced in a certain order between the 
agents. DPoS greatly reduces the number of 
verification node and improves transaction 
confirmation speed under the premise of security 
protection. However, the corresponding 
centralization degree is reduced. BitShares is an 
example of DPoS [2]. 
 
PBFT (Practical Byzantine Fault Tolerance): It is 
a practical Byzantine fault tolerance, and this kind of 
consensus cannot require the issuance of tokens, 
which is more suitable for the operation of the alliance 
chain. In 1999, the PBFT system [7][8] was proposed 
and the algorithm complexity was reduced to a 
polynomial level, which greatly improved efficiency. 
PBFT have 5 steps in its workflow, namely, 1)request, 
2)pre-prepare, 3)prepare, 4)commit and 5)reply. 
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RAFT: To solve the consistency problem in PBFT, 
Lamport etc. proposed a new algorithm named Paxos, 
which is the initial prototype of RAFT. It was not until 
2013 for  RAFT algorithm to be formally proposed by 
Ongaro etc.  in [9]. RAFT achieves the same effect as 
Paxos and is more convenient in engineering 
implementation and understanding.  
 
For a specific business scenario, the consensus 
algorithm has a great impact on the participants' 
decisions. For the alliance chain with certain trust 
basis, most of them take PBFT as the first choice, and 
the PBFT consensus mechanism performs better 
when nodes are fixed and the number of nodes is less. 
In the low dependence environment, the robustness of 
the blockchain system is generally guaranteed by 
PoW, PoS, and DPoS. 
 

III. BFDT PROXY VIRTUAL MACHINE (BPVM) 
CONSENSUS ALGORITHM 

 
BFDChain serves the main chain for Befund’s 
decentralized fund service platform for operating 
activities that are far more complex than that of 
Bitcoin and Ethereum. Thus, our goal is to design an 
efficient and robust consensus algorithm to support a 
sustainable and healthy eco-system.  
 
We use virtual machine based hybrid DPoS and PoS 
(VM-DPoSW) consensus algorithm to achieve our 
design goal. Here is the implementation detail of VM-
DPoSW: 
 
3.1 Virtual Machine 
Virtual Machines (VMs) are the abstract entities that 
perform mining work on BFDChain. VMs serve two 
purposes: first, they are the mining worker to solve 
the hash computing for the proof of work (PoW). 
Secondly, they are the delegates that represent the 
share stake of the shareholders of BFDT in the 
BFDChain eco-system (DPoS). To achieve this, VMs 
are created by smart contacts to have different 
computing powers, and the total number of the VMs 
are upper bounded in a given period of time based on 
supply and demands. BFDT Shareholders such as side 
chain owner, decentralized application developer, 
investors acquire the VMs with different computing 
power via bidding with BDFT. As VMs are the only 

eligible miners on the BFDChain ecosystem, and 
higher computing power represent higher voting right, 
the BFDT shareholders are incentive to invest on 
VMs and have BFDT locked in the BFDChain eco-
system to achieve stable and healthy long-term 
growth.      
 
3.2 Why VM-DPoSW? 
In the original design of PoW, it is the hope of the 
designer that all mining workers can use the CPU to 
perform the mining work such that each node, even 
with different computing power (thus different 
hashing power), still has the equal opportunity to 
participate in the decision-making of the blockchain. 
However, with the development of the hardware such 
as GPUs and ASICs, and the aggregation of 
individual computing power into mining pools, the 
ordinary miners rarely have the opportunity to create 
a block. Furthermore, there are more and more 
criticize of PoW not being environment friendly and 
slowing down transaction speed on blockchain. 
 
On the other side, the DPoS mechanism such as 
BitShares tries to tackle the problem of PoW by 
allowing each node to select the delegates based on 
its share stake. The top N delegates that have got the 
most votes have the accounting right. The sufficient 
decentralization is achieved as long as 50% of the 
voting shareholders believe their delegates are part of 
the delegates group that can perform the block 
creation and validation work [3]. Generally, the 
blockchain using DPoS is more efficient and power-
saving than PoW because all of the blocks creation 
and validation occurred only on a group of delegates. 
Yet, there are more and more criticize from the 
community that pure DPoS only represents the 
interest of the large shareholders, and the small and 
medium shareholders rarely have the rights in the 
block chain decision making process. 
 
The drawbacks of PoW and DPoS motivate us to 
come up VM-DPoSW, to balance the pros and cons 
of PoW and DPoS, for a stable, robust, and efficient 
consensus design. 
 
3.3 How Does VM-DPoSW work? 
 
We will use the Fig.1 to illustrate how VM-DPoSW 
works.  



 

 
Fig.1 The workflow of VM-DPoSW 

 
a. Create Virtual Machines 
First, after a successful biding, the smart contracts on 
BFDChain are triggered to create virtual machines 
(VMs) that fall into different categories of computing 
power. For better illustration, we simplify the model 
to assume there are only three types of VMs: gold 
(large computing power), silver (medium computing 
power), and bronze (small computing power). The 
computing power of each type is designed such that 
gold > silver > bronze, i.e., 

                                          (1) 
 
b. Queue Pool 
Let’s further assume the newly created virtual 
machines VM1/2, VM3/4, and VM5/6 belong to gold, 
silver, and bronze respectively. Right after VMs are 
created, their role is initially set as witness role, and 
are put into the queue pool as the delegate candidate.  
 
c. Voting and Delegate Cluster 
Sequentially, when the new transaction requests come, 
new smart contract is triggered to evaluate whether 
the delegate cluster pool has sufficient delegates to 
complete the transaction requests. If not, voting 
process is triggered to select additional witness from 
the queue pool to the delegate cluster pool. In our 
scenario, let’s assume VM2 of gold type, VM4 of 
silver type, and VM6 of bronze type are selected as 
delegates and put into the delegate cluster pool, and 
they fulfill the requirements that  

                         (2) 
 
d. Transaction Process 
In VM-DPoSW, the transaction requests are 
processed in different “rounds” in the time spectrum, 
and in each “round”, the hash difficulty is the same 
for all delegates. In our case, as illustrated in Fig.1., 

the round N starts at T0, and is expected to end at T3. 
Our algorithm is designed in the way that the total 
time in round N, , is equally divided into 
K slides, where K is the total number of delegates in 
the delegates cluster, i.e., 

                      (3) 
Let’s assume VM2 in gold type starts to serve the 
transaction request at T0 and stopped at T1 (the order 
may be different, and we will address the ordering in 
section 3.4). Within  time frame, VM2 processed 
X number of transaction requests. Same scenario 
applies to VM4 and VM6 at T1 and T2, and each 
processed Y and Z number of transaction requests 
within  time frame. Recall in terms of computing 
power, we have (1), and the hash difficulty is the same 
for all delegates in round N, thus we will have 

                                                             (4) 
 
We can see from eq.(3) that VM-DPoSW gives each 
delegate an equal opportunity to participate the 
mining process regardless the computing power of the 
delegates. On the other hand, eq. (4) shows that the 
delegate with higher computing power will process 
more transaction requests (thus more blocks) and thus 
generate more rewards for the shareholder with 
higher share stake, even it was only given same 
process time comparing with other delegates with 
lower computing power. In reality, we will put more 
constraints to ensure a sophisticated delegates system. 
For example, we may set the upper bound for the 
percentage of VMs in each category.  
 
 
3.4 The signature and ordering of VM-DPoSW 
As pointed out in [4], in PoW, the expected time to 
calculate a correct “nonce” is proportional the hash 
difficulty. i.e., the nonce  must satisfy the relations: 

                                               (5) 
 

 With . 
Where n is the mix-hash and m is the pseudo-random 
number cryptographically depend on H and d.  is 
the new block’s header H without the nonce and mix-
hash components, and d is the current data set. PoW 
is the proof of work function. Eq.5 is the foundation 
of the security of the blockchain and is the 
fundamental reason why a malicious node cannot 
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propagate newly create blocks that would otherwise 
overwrite history. 
 
In VM-DPoSW, however, we may choose to set the 
hash difficulty lower so that even the VM with lowest 
computing power can finish the hash computing 
quickly and can generate new block and process 
transactions in its given time window. While this 
design significantly increases the efficiency of the 
eco-system, it may increase the security vulnerability 
as malicious users may take advantage of the lower 
hash difficulty. This requires us to add additional 
security mechanism, namely, signature and random 
ordering, to safeguard the BFDChain ecosystem. 

Fig.2 The signature and ordering of VM-DPoS 
 
The design goal of the signature and random ordering 
is to ensure a given delegate VM in the delegate 
cluster can only process transaction request in the 
assigned “round” as well as the assigned time window. 
As illustrated in Fig.2., assume in round N, VM2 
starts to perform the mining and create a new block at 
T0, we add a private key into the optional filed of the 
block and got a signature  by performing 
 

                                              (6) 
Where  is the private key value for the 1st block 
created by VM2 in the round N. Similarly, when VM2 
creates the 2nd and 3rd block, the signature  and  
are calculated by 

                                         (7) 

                                         (8) 
respectively. Once VM2 creates its 3rd block, VM2 
determines this is the last block it can process, it then 
broadcast the signature  to all other VM delegates, 
before T2. 

Sequentially, VM4 and VM6 will be the second and 
third VMs to follow similar procedure to create their 
blocks and perform the signature broadcast at the end 
of their last block mining. In our case,  between 
T2 and T3, is the last signature in round N, and is the 
proof needed by each VM delegate to participate 
mining in the next round N+1. Image a malicious 
delegate tries to cheat the system by performing 
mining before round N finish and try to work on round 
N+1. Its mining of new block(s) will be rejected 
because it will not have the final signature  to sign 
the newly created block. 
 
In round N+1, we can generalize (6)-(8) as below: 

                    (9) 
Where K(n) is the key value at round N+1, and 

is the sum of the hash value of K number of 
VM delegate in the previous round (for example, we 
have K=3 in round N). 
 
In addition, we use the following mechanism to 
determine the order of VM delegate in round N+1: 

                                        (10) 
Where S(n) is the signature of the last block in round 
N (i.e.,  in our example) and M is the number of 
VM delegates. The mod operation will determine the 
serving order of each VM delegate in round N+1. In 
our case, in N+1, the mod result for VM2, VM4, and 
VM6 are 1, 0, and 2. Thus VM6 is scheduled to start 
to create block first at time stamp T4, followed by 
VM2 (3 blocks starting at T5), and VM4 (2 blocks 
starting at T6). 
 
If there is conflict during the mod operation, we point 
the VM delegate to the next available slot. In case a 
particular VM delegate is not able to generate block 
in its given time windows, we will use the signature 
in the previous broadcast. 
 

IV. THE CONTROLLABILITY ANALYSIS OF VM-
DPOSW 

In any system design, the controllability is the most 
import aspect to inspect. The consensus algorithm 
design is not an exception. 
 
By "controllable", we mean to evaluate whether 
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VM-DPoSW consensus algorithm can be properly 
managed even with heavy transaction requests from 
the main chain and side chain, and whether our 
algorithm can steer the resource efficiency over 
BFDChain eco-system from any initial value to the 
optimum state within a limited time window. This 
kind of controllability property is a crucial to 
achieve queue stabilization, delay bounds, and 
optimal resource control.  

 
Assume 

                                 (11) 
                                              (12) 

Eq.(9) and (10) yields 
                                                    (13) 
                                                  (14) 

Eq. (13) and (14) describe a non-linear discrete 
system, where the state vector  
represent the array of signature hash value and the 
ordering of the VM delegate. The input vector 

 represent the array of the key value and the 
number of VM delegates. The linearization is 
necessary to analyze the controllability [5]. Assume 
the equilibrium point is   , all of which 
are positive real numbers; linearizing Eqs. (13), (14) 
the equilibrium point, we obtain the following 
linearized system in state space: 

  (15) 

Let , we have 
                              (16) 

By modern control theory [5], the system is 
controllable iff is full row rank. As  

 are all positive real numbers, we can 
conclude the  is full row rank, and thus the 
VM-DPoSW is controllable. 
 

V.         Conclusions 
In this paper, we have discussed the design detail of 
VM-DPoSW, the consensus algorithm that support a 
robust BFDChain under the DAOS ecosystem. We 

discussed our motivation, the work flow and the 
additional security mechanism such as signature and 
random ordering. At last, we use the modern control 
theory to prove the VM-DPoSW is controllable under 
the state space analysis. 
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