

Abstract— In this paper, we discuss the design
detail of VM-DPoSW, the consensus algorithm
that supports a robust BFDChain under the
DAOS ecosystem. The workflow, design principle,
implementation and its controllability analysis are
discussed in detail.

I. INTRODUCTION

s one of the most important aspects of any
blockchain systems, the consensus algorithm

design is crucial to construct a robust and health
blockchain ecosystem. In BFDChain, we designed a
new consensus algorithm named VM-DPoSW, which
is a virtual machine based hybrid system with both
Proof of Work (PoW) and Delegated Proof of Stake
(DPoS) support.

The rest of this paper is organized as follows: In
Section II, we present the state of art review of
popular consensus algorithms. We then provide
detailed technical discussion of VM-DPoSW and its
controllability analysis in Section III and IV. Section
IV includes concluding remarks of our design.

II. STATE OF ART OF CONSENSUS ALGORITHMS
A safe, orderly and healthy blockchain requires us to
solve two fundamental problems: double spending
and byzantine generals problem [8]. Double spending
problem means to reuse the currency in two
transactions simultaneously. Byzantine generals
problem means during the peer to peer
communication of the distributed system, some
maliciously users may tamper the communication
contents, thus lead to security breach or
communication inconsistency.

In order to make the whole blockchain safe and
consistent, the generation of block needs to reach a

certain consensus, thus the consensus algorithm is one
of the keys for any blockchain technologies. The
common consensus algorithms are PoW, PoS, DPoS,
PBFT, and RAFT.

PoW (Proof of Work): The workload proof
mechanism, through a large number of HASH
operations, calculates a suitable random number and
produces a new block. And this is the safest way of
security, but at the same time, it is also very energy
consuming. Bitcoin [1] is the most typical PoW
implementation.

PoS (Proof of Stake): The ownership proof
mechanism, through the holding amount and holding
time of the token, reduces the difficulty of the block
production. This method solves the problem of energy
consumption comparing with PoW, but there are
certain bottlenecks in security, and system bifurcation
is easy to appear. PPCoin [6] is one typical PoW
implementation.

DPoS (Delegated Proof of Stake): The agent's
equity proof mechanism, by which a certain number
of agents are elected by the ballot papers, and the
blocks are produced in a certain order between the
agents. DPoS greatly reduces the number of
verification node and improves transaction
confirmation speed under the premise of security
protection. However, the corresponding
centralization degree is reduced. BitShares is an
example of DPoS [2].

PBFT (Practical Byzantine Fault Tolerance): It is
a practical Byzantine fault tolerance, and this kind of
consensus cannot require the issuance of tokens,
which is more suitable for the operation of the alliance
chain. In 1999, the PBFT system [7][8] was proposed
and the algorithm complexity was reduced to a
polynomial level, which greatly improved efficiency.
PBFT have 5 steps in its workflow, namely, 1)request,
2)pre-prepare, 3)prepare, 4)commit and 5)reply.

 VM-DPoSW, the Consensus Algorithm of BFDChain:
The Design Principle and Quantitative Analysis

Befund Foundation Ltd.

A

RAFT: To solve the consistency problem in PBFT,
Lamport etc. proposed a new algorithm named Paxos,
which is the initial prototype of RAFT. It was not until
2013 for RAFT algorithm to be formally proposed by
Ongaro etc. in [9]. RAFT achieves the same effect as
Paxos and is more convenient in engineering
implementation and understanding.

For a specific business scenario, the consensus
algorithm has a great impact on the participants'
decisions. For the alliance chain with certain trust
basis, most of them take PBFT as the first choice, and
the PBFT consensus mechanism performs better
when nodes are fixed and the number of nodes is less.
In the low dependence environment, the robustness of
the blockchain system is generally guaranteed by
PoW, PoS, and DPoS.

III. BFDT PROXY VIRTUAL MACHINE (BPVM)
CONSENSUS ALGORITHM

BFDChain serves the main chain for Befund’s
decentralized fund service platform for operating
activities that are far more complex than that of
Bitcoin and Ethereum. Thus, our goal is to design an
efficient and robust consensus algorithm to support a
sustainable and healthy eco-system.

We use virtual machine based hybrid DPoS and PoS
(VM-DPoSW) consensus algorithm to achieve our
design goal. Here is the implementation detail of VM-
DPoSW:

3.1 Virtual Machine
Virtual Machines (VMs) are the abstract entities that
perform mining work on BFDChain. VMs serve two
purposes: first, they are the mining worker to solve
the hash computing for the proof of work (PoW).
Secondly, they are the delegates that represent the
share stake of the shareholders of BFDT in the
BFDChain eco-system (DPoS). To achieve this, VMs
are created by smart contacts to have different
computing powers, and the total number of the VMs
are upper bounded in a given period of time based on
supply and demands. BFDT Shareholders such as side
chain owner, decentralized application developer,
investors acquire the VMs with different computing
power via bidding with BDFT. As VMs are the only

eligible miners on the BFDChain ecosystem, and
higher computing power represent higher voting right,
the BFDT shareholders are incentive to invest on
VMs and have BFDT locked in the BFDChain eco-
system to achieve stable and healthy long-term
growth.

3.2 Why VM-DPoSW?
In the original design of PoW, it is the hope of the
designer that all mining workers can use the CPU to
perform the mining work such that each node, even
with different computing power (thus different
hashing power), still has the equal opportunity to
participate in the decision-making of the blockchain.
However, with the development of the hardware such
as GPUs and ASICs, and the aggregation of
individual computing power into mining pools, the
ordinary miners rarely have the opportunity to create
a block. Furthermore, there are more and more
criticize of PoW not being environment friendly and
slowing down transaction speed on blockchain.

On the other side, the DPoS mechanism such as
BitShares tries to tackle the problem of PoW by
allowing each node to select the delegates based on
its share stake. The top N delegates that have got the
most votes have the accounting right. The sufficient
decentralization is achieved as long as 50% of the
voting shareholders believe their delegates are part of
the delegates group that can perform the block
creation and validation work [3]. Generally, the
blockchain using DPoS is more efficient and power-
saving than PoW because all of the blocks creation
and validation occurred only on a group of delegates.
Yet, there are more and more criticize from the
community that pure DPoS only represents the
interest of the large shareholders, and the small and
medium shareholders rarely have the rights in the
block chain decision making process.

The drawbacks of PoW and DPoS motivate us to
come up VM-DPoSW, to balance the pros and cons
of PoW and DPoS, for a stable, robust, and efficient
consensus design.

3.3 How Does VM-DPoSW work?

We will use the Fig.1 to illustrate how VM-DPoSW
works.

Fig.1 The workflow of VM-DPoSW

a. Create Virtual Machines
First, after a successful biding, the smart contracts on
BFDChain are triggered to create virtual machines
(VMs) that fall into different categories of computing
power. For better illustration, we simplify the model
to assume there are only three types of VMs: gold
(large computing power), silver (medium computing
power), and bronze (small computing power). The
computing power of each type is designed such that
gold > silver > bronze, i.e.,

 (1)

b. Queue Pool
Let’s further assume the newly created virtual
machines VM1/2, VM3/4, and VM5/6 belong to gold,
silver, and bronze respectively. Right after VMs are
created, their role is initially set as witness role, and
are put into the queue pool as the delegate candidate.

c. Voting and Delegate Cluster
Sequentially, when the new transaction requests come,
new smart contract is triggered to evaluate whether
the delegate cluster pool has sufficient delegates to
complete the transaction requests. If not, voting
process is triggered to select additional witness from
the queue pool to the delegate cluster pool. In our
scenario, let’s assume VM2 of gold type, VM4 of
silver type, and VM6 of bronze type are selected as
delegates and put into the delegate cluster pool, and
they fulfill the requirements that

 (2)

d. Transaction Process
In VM-DPoSW, the transaction requests are
processed in different “rounds” in the time spectrum,
and in each “round”, the hash difficulty is the same
for all delegates. In our case, as illustrated in Fig.1.,

the round N starts at T0, and is expected to end at T3.
Our algorithm is designed in the way that the total
time in round N, , is equally divided into
K slides, where K is the total number of delegates in
the delegates cluster, i.e.,

 (3)
Let’s assume VM2 in gold type starts to serve the
transaction request at T0 and stopped at T1 (the order
may be different, and we will address the ordering in
section 3.4). Within time frame, VM2 processed
X number of transaction requests. Same scenario
applies to VM4 and VM6 at T1 and T2, and each
processed Y and Z number of transaction requests
within time frame. Recall in terms of computing
power, we have (1), and the hash difficulty is the same
for all delegates in round N, thus we will have

 (4)

We can see from eq.(3) that VM-DPoSW gives each
delegate an equal opportunity to participate the
mining process regardless the computing power of the
delegates. On the other hand, eq. (4) shows that the
delegate with higher computing power will process
more transaction requests (thus more blocks) and thus
generate more rewards for the shareholder with
higher share stake, even it was only given same
process time comparing with other delegates with
lower computing power. In reality, we will put more
constraints to ensure a sophisticated delegates system.
For example, we may set the upper bound for the
percentage of VMs in each category.

3.4 The signature and ordering of VM-DPoSW
As pointed out in [4], in PoW, the expected time to
calculate a correct “nonce” is proportional the hash
difficulty. i.e., the nonce must satisfy the relations:

 (5)

 With .
Where n is the mix-hash and m is the pseudo-random
number cryptographically depend on H and d. is
the new block’s header H without the nonce and mix-
hash components, and d is the current data set. PoW
is the proof of work function. Eq.5 is the foundation
of the security of the blockchain and is the
fundamental reason why a malicious node cannot

2
goldVM > 4

silverVM > 6
bronzeVM

2
goldVM + 4

silverVM + 6
bronzeVM ≥ 50%VotingPower

ΔT = T 3−T 0

T1−T 0 = T 2 −T1= T 3−T 2 = ΔT / 3

ΔT / 3

ΔT / 3

X >Y > Z

nH

n ≤
2562
dH
∧m = mH

(n,m) = PoW (nH , nH ,d)

nH

propagate newly create blocks that would otherwise
overwrite history.

In VM-DPoSW, however, we may choose to set the
hash difficulty lower so that even the VM with lowest
computing power can finish the hash computing
quickly and can generate new block and process
transactions in its given time window. While this
design significantly increases the efficiency of the
eco-system, it may increase the security vulnerability
as malicious users may take advantage of the lower
hash difficulty. This requires us to add additional
security mechanism, namely, signature and random
ordering, to safeguard the BFDChain ecosystem.

Fig.2 The signature and ordering of VM-DPoS

The design goal of the signature and random ordering
is to ensure a given delegate VM in the delegate
cluster can only process transaction request in the
assigned “round” as well as the assigned time window.
As illustrated in Fig.2., assume in round N, VM2
starts to perform the mining and create a new block at
T0, we add a private key into the optional filed of the
block and got a signature by performing

 (6)
Where is the private key value for the 1st block
created by VM2 in the round N. Similarly, when VM2
creates the 2nd and 3rd block, the signature and
are calculated by

 (7)

 (8)
respectively. Once VM2 creates its 3rd block, VM2
determines this is the last block it can process, it then
broadcast the signature to all other VM delegates,
before T2.

Sequentially, VM4 and VM6 will be the second and
third VMs to follow similar procedure to create their
blocks and perform the signature broadcast at the end
of their last block mining. In our case, between
T2 and T3, is the last signature in round N, and is the
proof needed by each VM delegate to participate
mining in the next round N+1. Image a malicious
delegate tries to cheat the system by performing
mining before round N finish and try to work on round
N+1. Its mining of new block(s) will be rejected
because it will not have the final signature to sign
the newly created block.

In round N+1, we can generalize (6)-(8) as below:

 (9)
Where K(n) is the key value at round N+1, and

is the sum of the hash value of K number of
VM delegate in the previous round (for example, we
have K=3 in round N).

In addition, we use the following mechanism to
determine the order of VM delegate in round N+1:

 (10)
Where S(n) is the signature of the last block in round
N (i.e., in our example) and M is the number of
VM delegates. The mod operation will determine the
serving order of each VM delegate in round N+1. In
our case, in N+1, the mod result for VM2, VM4, and
VM6 are 1, 0, and 2. Thus VM6 is scheduled to start
to create block first at time stamp T4, followed by
VM2 (3 blocks starting at T5), and VM4 (2 blocks
starting at T6).

If there is conflict during the mod operation, we point
the VM delegate to the next available slot. In case a
particular VM delegate is not able to generate block
in its given time windows, we will use the signature
in the previous broadcast.

IV. THE CONTROLLABILITY ANALYSIS OF VM-
DPOSW

In any system design, the controllability is the most
import aspect to inspect. The consensus algorithm
design is not an exception.

By "controllable", we mean to evaluate whether

1
VM 2S

1
VM 2S = Hash(1

VM 2K)

1
VM 2K

2
VM 3S 3

VM 3S

2
VM 3S = Hash(2

VM 2K + 1
VM 3S)

3
VM 3S = Hash(3

VM 2K + 2
VM 3S)

3
VM 3S

1
VM 6S

1
VM 6S

S(n +1) = Hash K(n)+ VMiS (n)
i=1

k

∑⎛
⎝⎜

⎞
⎠⎟

VMiS (n)
i=1

k

∑

O(n +1) = S(n)mod(M)

1
VM 6S

VM-DPoSW consensus algorithm can be properly
managed even with heavy transaction requests from
the main chain and side chain, and whether our
algorithm can steer the resource efficiency over
BFDChain eco-system from any initial value to the
optimum state within a limited time window. This
kind of controllability property is a crucial to
achieve queue stabilization, delay bounds, and
optimal resource control.

Assume

 (11)
 (12)

Eq.(9) and (10) yields
 (13)
 (14)

Eq. (13) and (14) describe a non-linear discrete
system, where the state vector
represent the array of signature hash value and the
ordering of the VM delegate. The input vector

 represent the array of the key value and the
number of VM delegates. The linearization is
necessary to analyze the controllability [5]. Assume
the equilibrium point is , all of which
are positive real numbers; linearizing Eqs. (13), (14)
the equilibrium point, we obtain the following
linearized system in state space:

 (15)

Let , we have
 (16)

By modern control theory [5], the system is
controllable iff is full row rank. As

 are all positive real numbers, we can
conclude the is full row rank, and thus the
VM-DPoSW is controllable.

V. Conclusions
In this paper, we have discussed the design detail of
VM-DPoSW, the consensus algorithm that support a
robust BFDChain under the DAOS ecosystem. We

discussed our motivation, the work flow and the
additional security mechanism such as signature and
random ordering. At last, we use the modern control
theory to prove the VM-DPoSW is controllable under
the state space analysis.

References
[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic

cash system”, 2009.
[2] "https://bitshares.org/,".
[3] "https://bitshares.org/technology/delegated-

proof-of-stake-consensus/,".
[4] Ethereum: A secure decentralized generaliaed

transaction ledger EIP-150 revision”, Gavin
Wood

[5] Z. Bubnicki, Modern control theory, Spring
Berlin Heidelberg New York 2005.

[6] S. King and S. Nadal, "PPCoin: Peer-to-Peer
Crypto-Currency with Proof-of-Stake,", 2012.

[7] M. Castro and B. Liskov, "Practical Byzantine
fault tolerance," in Symposium on Operating
Systems Design and Implementation, 1999, pp.
173--186.

[8] L. Lamport, R. Shostak and M. Pease, "The
Byzantine Generals Problem," Acm Transactions
on Programming Languages & Systems, vol. 4, pp.
382-401, 1982.

[9] D. Ongaro and J. Ousterhout, "In search of an
understandable consensus algorithm," Draft of
October, 2013.

f (K ,S(n)) = Hash K + VMiS (n)
i=1

k

∑⎛
⎝⎜

⎞
⎠⎟

g(S(n),M) = S(n)mod(M)

S(n +1) = f (K ,S(n))
O(n +1) = g(S(n),M)

x(n) =
T[s(n),o(n)]

u(n) =
T[K,M]

0s(n) , 0o(n) , 0K , 0M()

δ !S(n +1)
δ !O(n +1)
⎛

⎝⎜
⎞

⎠⎟
=

∂ f
∂S

∂ f
∂O

∂g
∂R

∂g
∂O

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

δS(n)
δO(n)
⎛
⎝⎜

⎞
⎠⎟
+

∂ f
∂K

∂ f
∂M

∂g
∂K

∂g
∂M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

δK
δM
⎛
⎝⎜

⎞
⎠⎟

A =

∂ f
∂S

∂ f
∂O

∂g
∂R

∂g
∂O

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,B =

∂ f
∂K

∂ f
∂M

∂g
∂K

∂g
∂M

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

δ !x(n +1) = Aδ x(n)+ Bδu(n)

U = BAB]⎡⎣

0s(n) , 0o(n) , 0K , 0M()
U = BAB]⎡⎣

